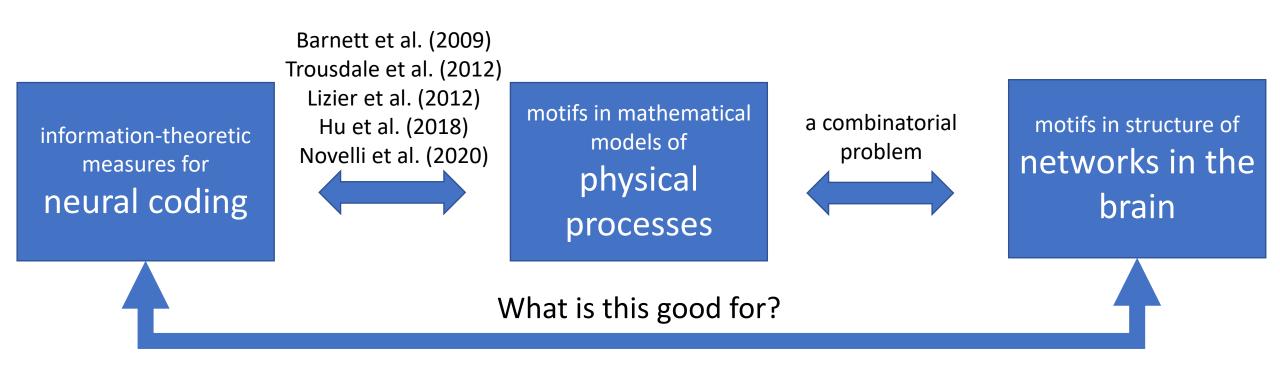
Motifs for processes on networks

Alice C. Schwarze*, Mason A. Porter**

*Department of Biology, University of Washington **Department of Mathematics, University of California Los Angeles



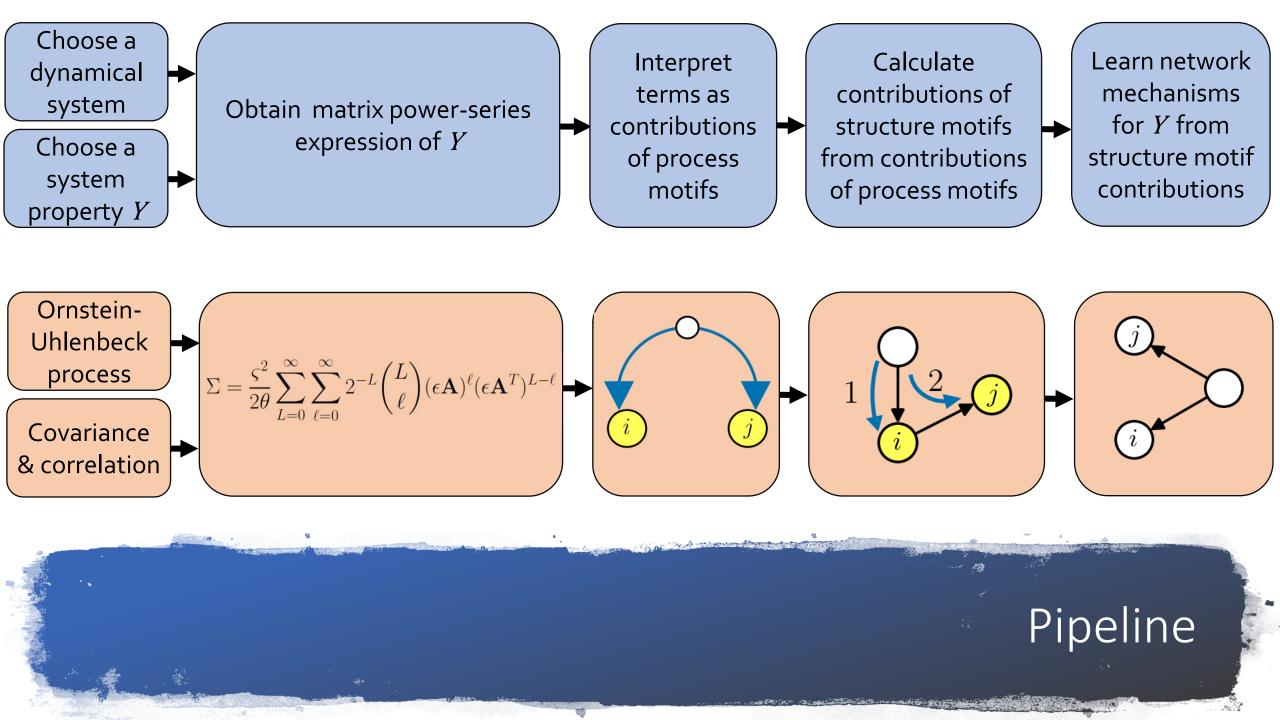
Connection between information-theoretic measures and network structure Physical interpretation of information-theoretic measures of neural activity Theoretical underpinning for relationship between structural and functional connectivity

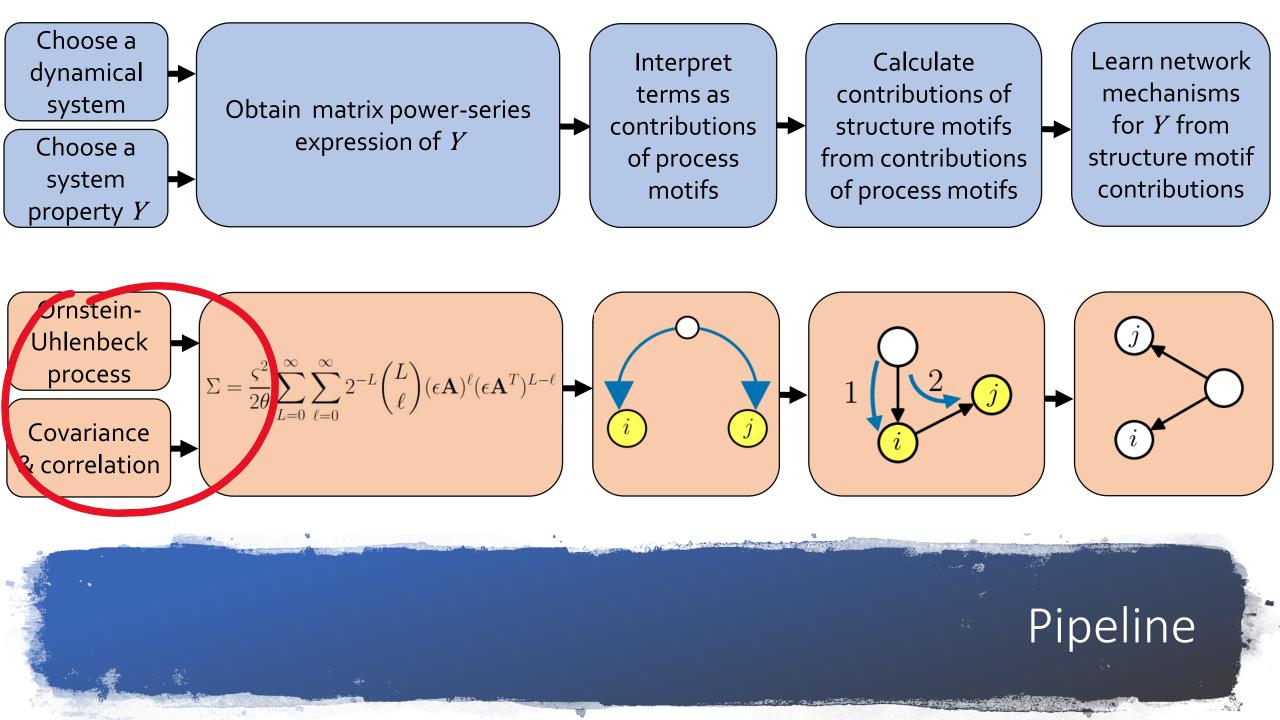
1-slide summary

Outline

1. Pipeline

- 2. An example: Covariance and correlation for the OU process
 - 1. Why care about this example?
 - 2. OU process
 - 3. Process motifs
 - 4. Structure motifs
- 3. Conclusions





Ornstein-Uhlenbeck process

Simple stochastic differential equation

Popular in neuroscience, econometrics, etc.

Linear-response approximation of IF model

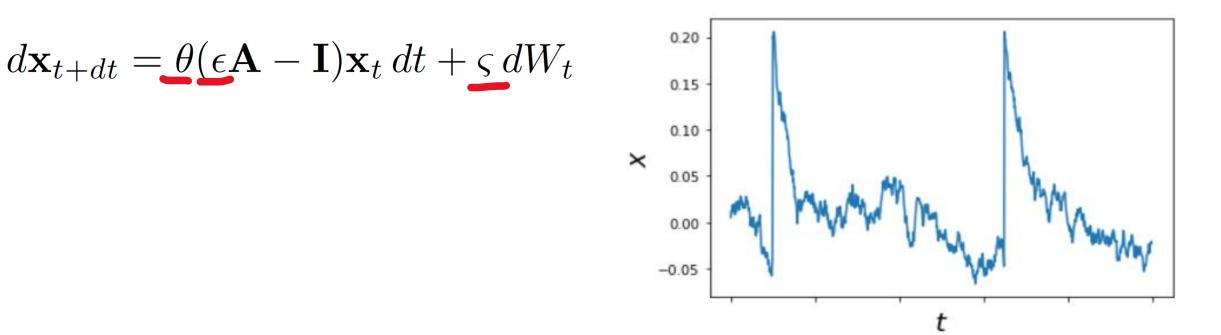
Covariance and correlation

Simple measure of interaction for pairs of variables

Popular measure of functional connectivity

For OU process, entropy, mutual information, etc. are functions of covariance and/or correlation

Covariance & correlation for OUP



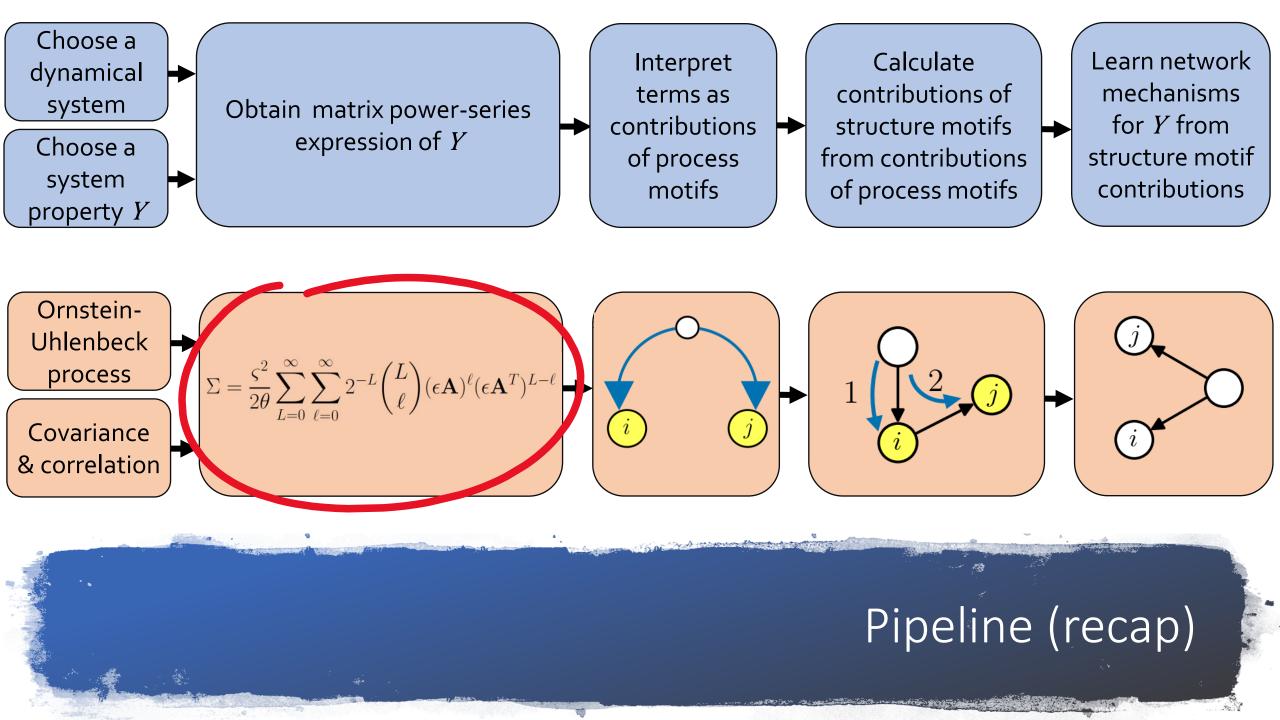
The Ornstein-Uhlenbeck process

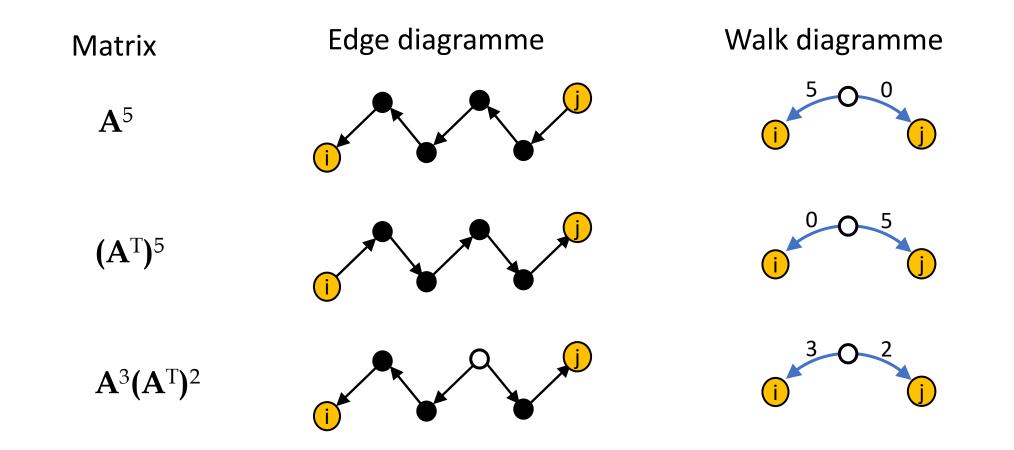
$$d\mathbf{x}_{t+dt} = \theta(\epsilon \mathbf{A} - \mathbf{I})\mathbf{x}_t \, dt + \varsigma \, dW_t$$

Covariance matrix Σ

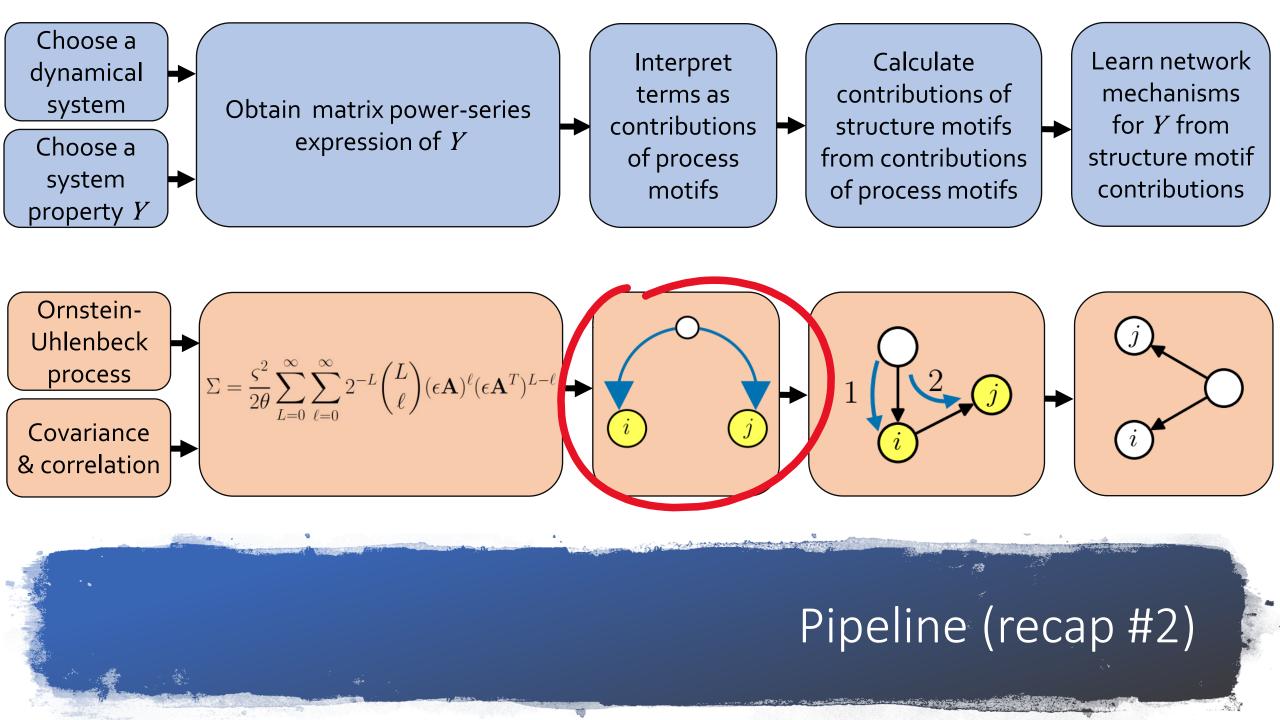
$$\begin{split} \mathbf{\Sigma} &= \langle \mathbf{x}_t \, \mathbf{x}_t^T \rangle = \langle \mathbf{x}_{t+dt} \, \mathbf{x}_{t+dt}^T \rangle \\ &= \frac{\varsigma^2}{2\theta} \sum_{L=0}^{\infty} \sum_{\ell=0}^{\infty} 2^{-L} \binom{L}{\ell} (\epsilon \mathbf{A})^{\ell} (\epsilon \mathbf{A}^T)^{L-\ell} \end{split}$$

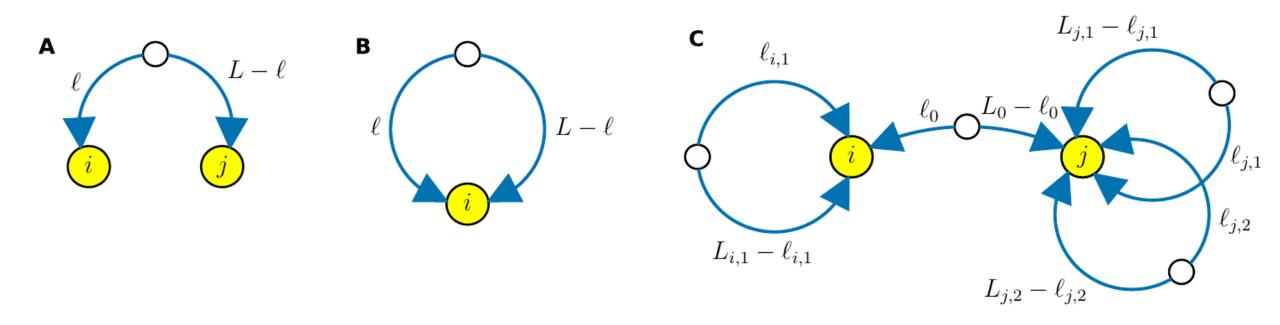
The Ornstein-Uhlenbeck process



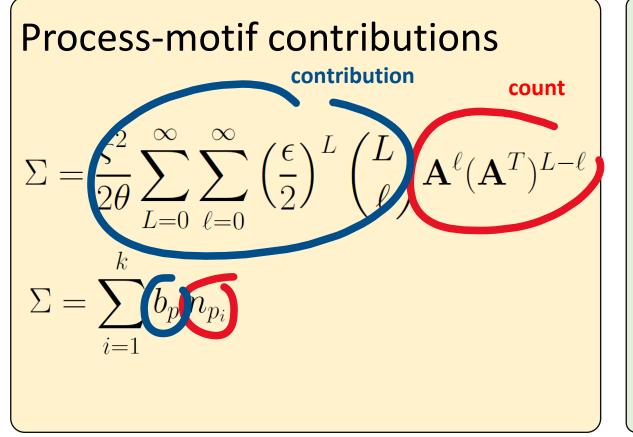


Matrix powers and walks in networks





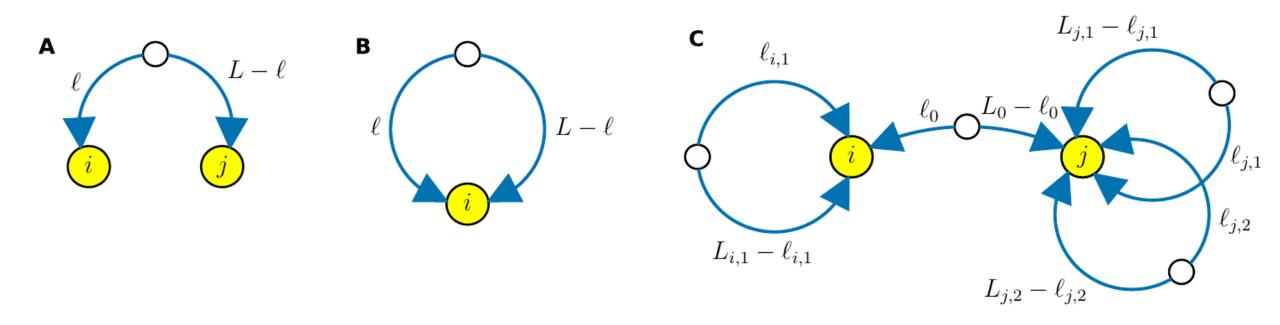
Process motifs for (A) covariance, (B) variance, and (C) correlation.



Structure-motif contributions

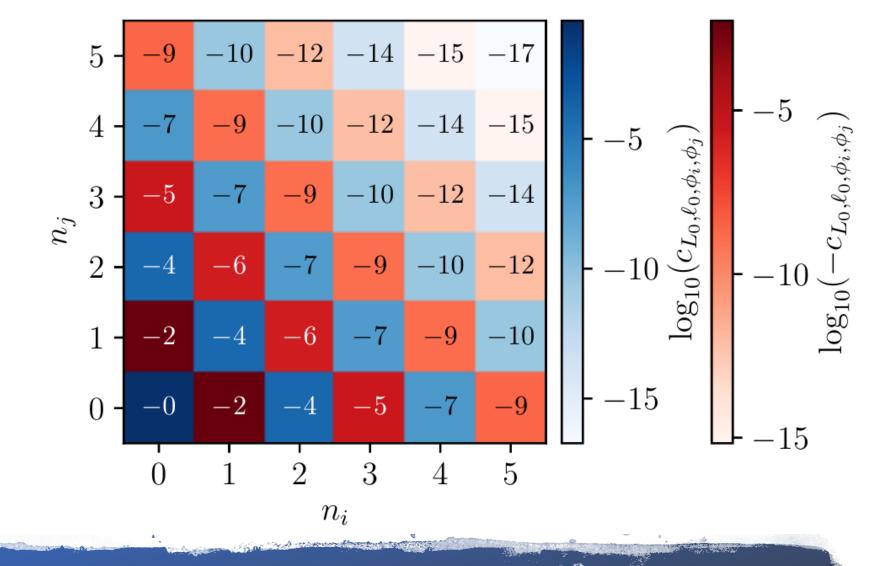
Contributions of process motifs

Contributions of process motifs

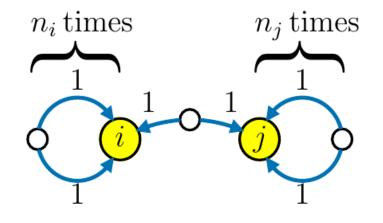


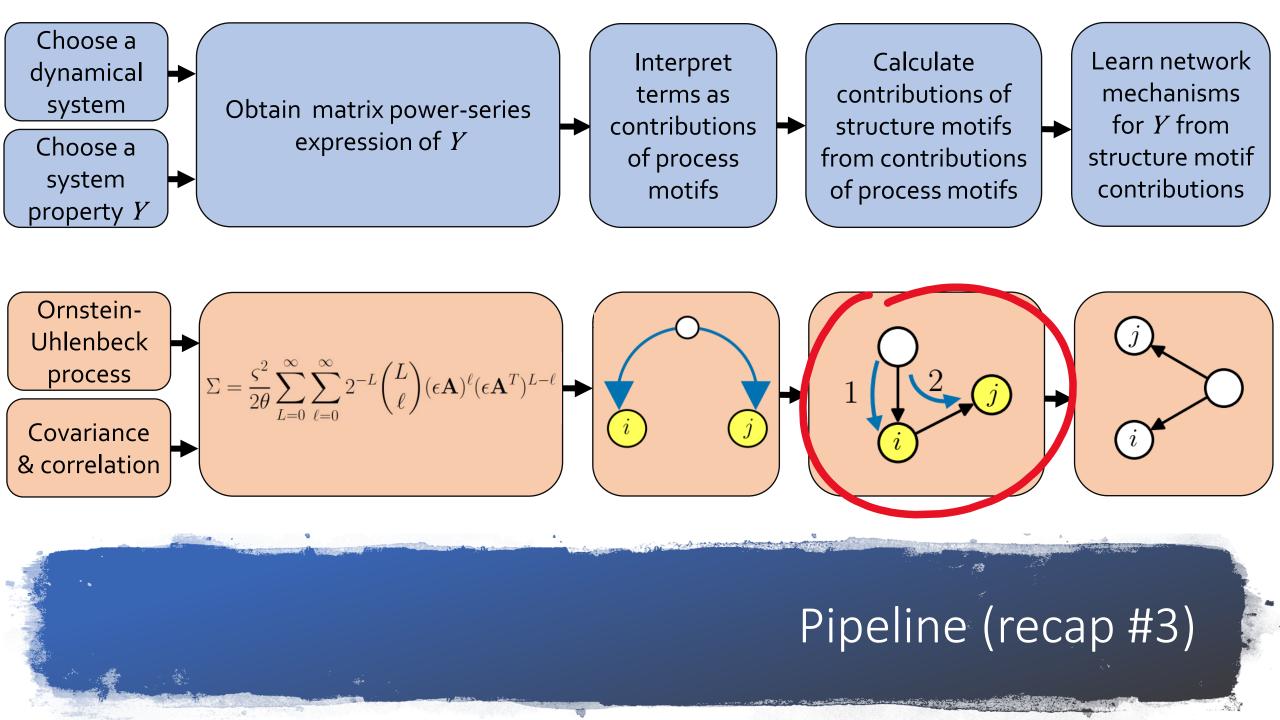
Process motifs for (A) covariance, (B) variance, and (C) correlation.

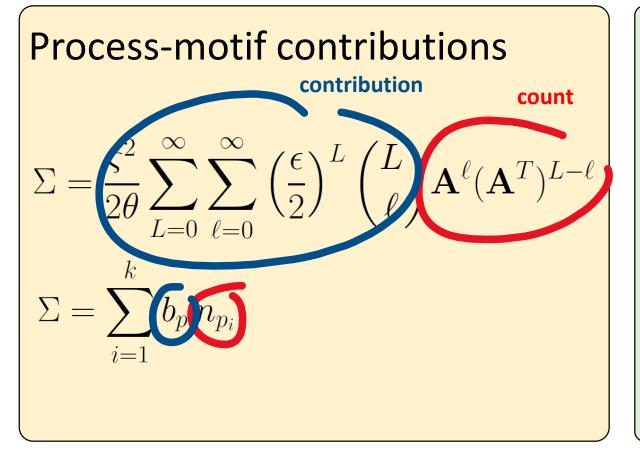
Process motifs (recap)



Contributions of process motifs





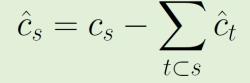


Structure-motif contributions

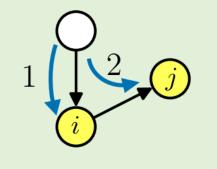
total contribution

specific contribution

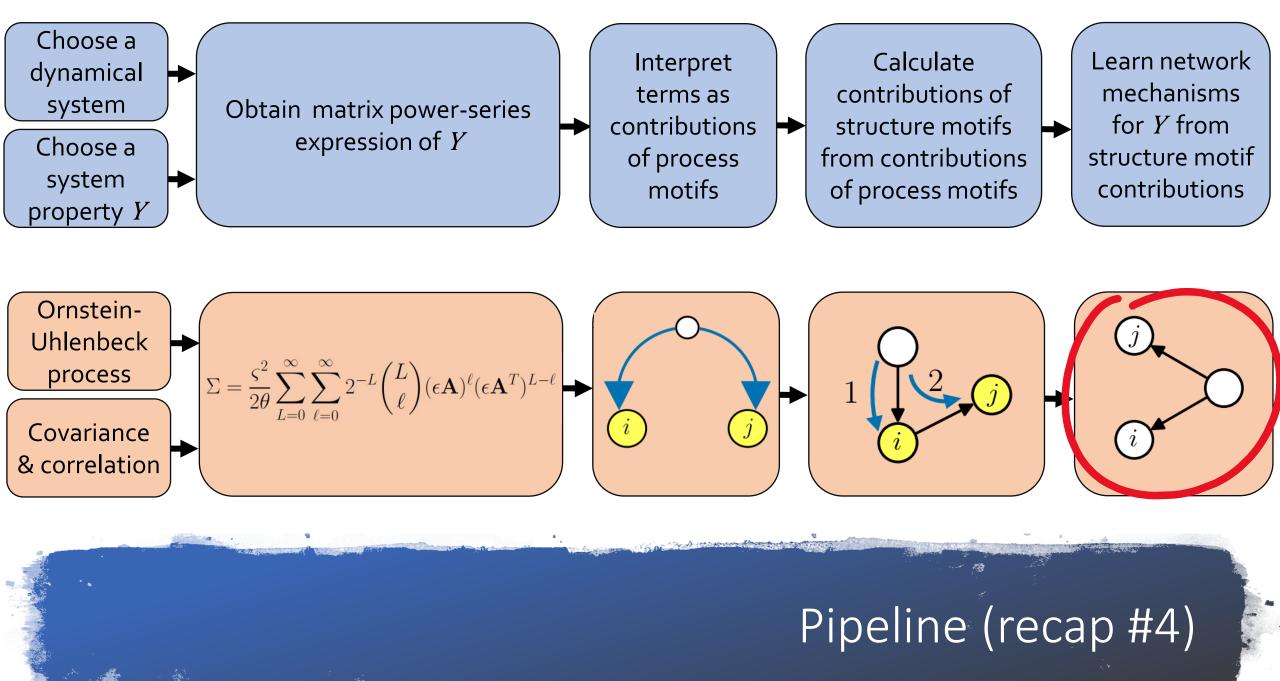
$$c_s = \sum_{p_i \text{ "on" } s} b_{p_i}$$

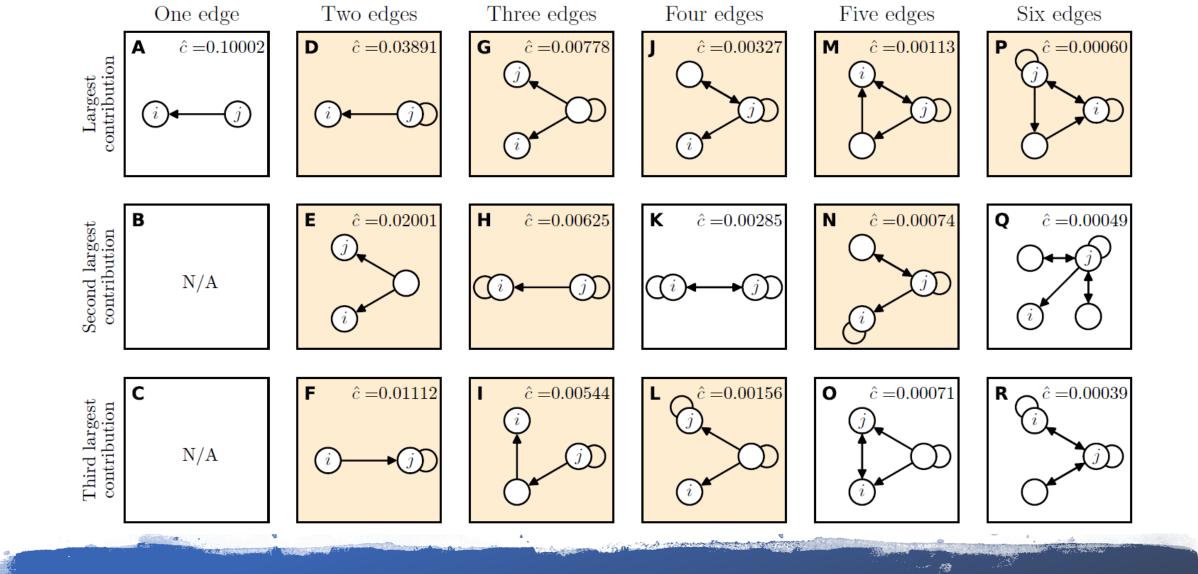


 $\Sigma =$

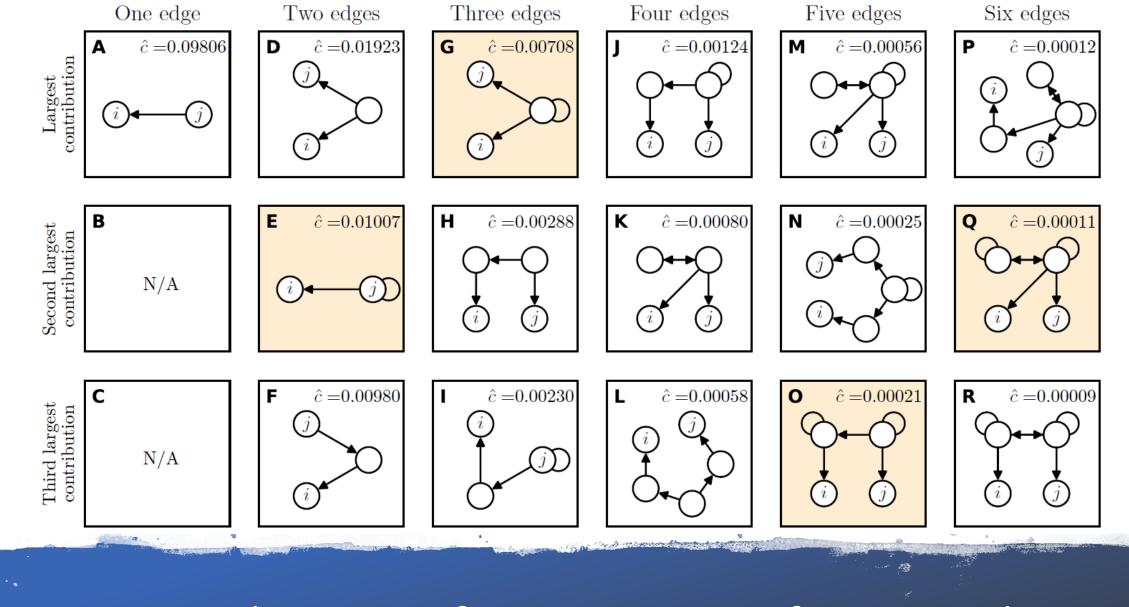


Specific contributions of structure motifs





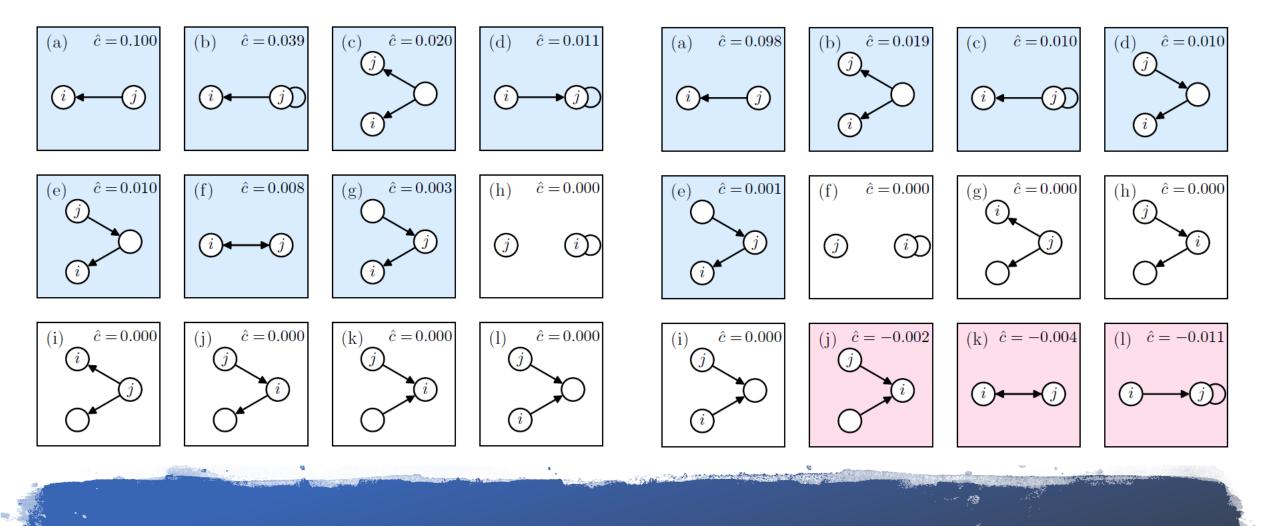
Contributions of structure motifs to covariance



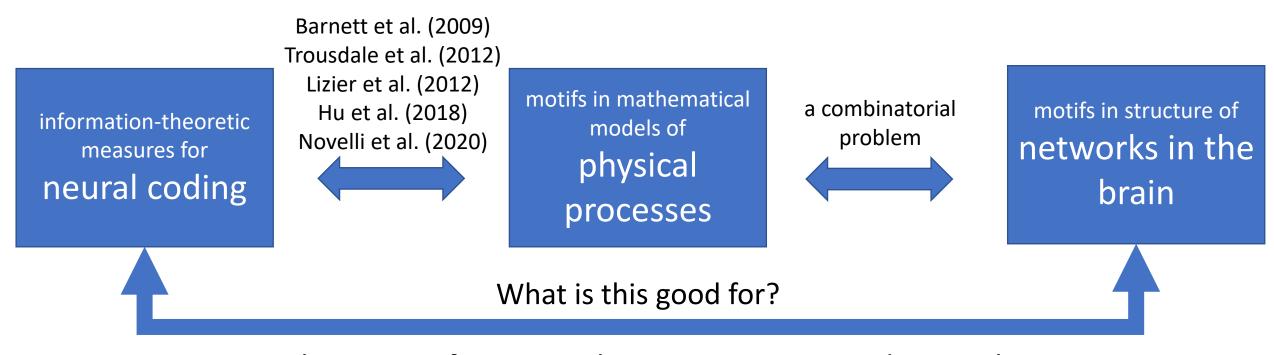
Contributions of structure motifs to correlation

Covariance

Correlation



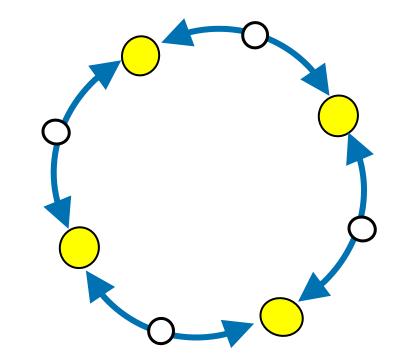
2-edge "network mechanisms"



Connection between information-theoretic measures and network structure Physical interpretation of information-theoretic measures of neural activity Theoretical underpinning for relationship between structural and functional connectivity

- Physical interpretation of information-theoretic measures via dynamical systems + graph theory approach
- Clear, quantitative link between network structure and informationtheoretic measures
- Network mechanisms that enhance or reduce information-theoretic measures

- Entropy and mutual information
- Other information-theoretic measures
- Graphical models for network inference



https://arxiv.org/abs/2007.07447

Future directions